_
Ω
-7
_
_
α
N
0
Ω
-7
+
J
Ω
٠.
≥
≥
≥
`
\sim
Ω
Ξ
Ξ
4

STUDY MODULE D	ESCRIPTION FORM		
		Code	
Information Engineering		1010331221010330388	
Field of study	Profile of study	Year /Semester	
Automotic Control on I Balladia	(general academic, practical)		
Automatic Control and Robotics	(brak)	1/2	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
-	Polish	obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	full-time		
No. of hours		No. of credits	
Lecture: - Classes: - Laboratory: 30	Project/seminars:	- 2	
Status of the course in the study program (Basic, major, other)	(university-wide, from another fie	eld)	
(brak)	(brak)	
Education areas and fields of science and art		ECTS distribution (number	
		and %)	
technical sciences		2 100%	
Technical sciences		2 100%	
Responsible for subject / lecturer:	Responsible for subjec	t / lecturer:	
dr inż. Piotr Kaczmarek	dr inż. Piotr Kaczmarek		
email: piotr.kaczmarek@put.poznan.pl	email: piotr.kaczmarek@put.poznan.pl		
tel. +48616652886 tel. +48616652886			
Faculty of Electrical Engineering Faculty of Electrical Engineering		•	
ul. Piotrowo 3A 60-965 Poznań	ul. Piotrowo 3A 60-965 Poznań		

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	basic knowledge from high school program in mathematics , computer science and logic
2	Skills	Student is able to obtain information from the literature, databases, and other sources; he or she has the skills of self-education in order to improve and update professional skills. He or she speaks English at a level sufficient to B2 communication, as well as reading
		comprehension cards catalog, application notes, manuals, equipment and descriptions of tools.
3 Social competencies		He or she understands the need and knows the possibilities of lifelong learning, improving professional, personal and social, skills
		can inspire and organize the learning of others.

Assumptions and objectives of the course:

The aim of the course is to teach object-oriented programming in C ++ Introduction to basic libraries and tools supporting PC programming .

Subject of this semester is implemented in the form of laboratory classes .

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has theoretical and practical knowledge related to selected algorithms and data structures and methods and techniques of procedural programming and object-oriented [[K_W10]]
- 2. Student has knowledge orelated to computer architectures, systems, and computer networks and operating systems [[K_W13]]

Skills:

- 1. The student is able to construct a simple solution algorithm engineering tasks and implement, test, and run it in your chosen development environment on a PC for selected operating systems [K_U10]
- 2. The student is able to work individually and in a team; is able to estimate the time needed for the commissioned work; able to develop and implement a work schedule to ensure deadline [K_U02]

Social competencies:

1. The student is aware of and understands the validity of non-technical aspects and effects of engineering activities including its impact on the environment and the resulting responsibility for the decisions - [K_K02]

Assessment methods of study outcomes

Checking practical skills and object-oriented procedural programming in C and C++, evaluation of the test, working on classes and homework and group project

Course description

Laboratory: Programming in C and C ++, handling and formatting input / output , learning the use of loops and conditionals , organizing the program code by using the function . The use of tables , indices and dynamic data structures (lists one and two) . Create and design of simple objects , the use of inheritance and polymorphism , use opreratorów , supporting the use of programming libraries (OpenGL , STL , windows sokets)

Basic bibliography:

- 1. Bruce Eckel, Thinking in C++, Volume 2: Practical Programming
- 2. Bjarne Stroustrup, Programming: Principles and Practice Using C++ (2nd Edition)
- 3. Irv Englander, The Architecture of Computer Hardware, Systems Software, and Networking: An Information Technology Approach

Additional bibliography:

Result of average student's workload

Activity	Time (working hours)
1. Laboratories	30
2. Preparation for the exercise and performance reports	60

Student's workload

Source of workload	hours	ECTS
Total workload	190	8
Contact hours	95	4
Practical activities	95	4